FFT

FFT过程(n items) \(F(x) = FL(x^2)+x*FR(x^2)\\ F(w_n^k) = FL((w_{n}^k)^2)+w_n^kFR((w_{n}^k)^2)\\ F(w_n^k) = FL(w_{n/2}^k)+w_n^kFR(w_{n/2}^k)\\ solve:w_n^0...w_n^{n/2-1}\\ to: w_n^{n/2-1}...w_n^{n-1}\\\) 假设$k<n/2$,由于: \(w_n^k = w_n^{k\%n}\) 所以可以做如下转化 \(F(w_n^{k+n/2}) = FL((w_n^{k+n/2})^2)+w_n^{k+n/2}FR((w_n^{k+n/2})^2)\\ bacause\\ (w_n^k)^j = w_n^{kj}\\ therefore\\ =FL(w_n^{2k+n})+w_n^{k+n/2}FR(w_n^{2k+n})\\ w_n^k = w_n^{k\%n}\\ = FL(w_n^{2k})+w_n^{k+n/2}FR(w_n^{2k})\\ w_{2n}^{2k} = w_n^k\\ = FL(w_{n/2}^k)+w_n^{k+n/2}FR(w_{n/2}^k)\\ w_n^{k+n/2} = -w_n^{k}\\ therefore \\ FL(w_{n/2}^k)-w_n^{k}FR(w_{n/2}^k)\) DFT OK!

IDFT \(nF[k] = \sum\limits_{i = 0}^{n-1}(\omega_n^{-k})^iY[i]\)